

cclib

Parsers and algorithms for computational chemists

<u>Noel O'Boyle</u>,¹ Adam Tenderholt², Mehdi Bounouar³

¹Unilever Centre for Molecular Science Informatics ²Dept. of Chemistry, Stanford University ³Technical University of Munich

Acknowledgements: Dr. John Mitchell, Cambridge

Overview of cclib

- cclib is a programming library which
 - contains parsers for output files of computational chemistry codes
 - includes several algorithms for analysing results
- cclib is written in Python
- cclib is Open Source (LGPL)

http://cclib.sf.net

Why is cclib needed?

- Analysis methods are available only to users of certain packages
 - Morokuma energy decomposition (implemented in GAMESS)
 - Charge Decomposition Analysis (Frenking's code only reads Gaussian output files)
- Keeps up to date with new versions of packages
- Allows chemists to focus on algorithms
- Makes implementation of algorithms
 independent of proprietary software

http://cclib.sf.net

Parsers

- ADF, GAMESS (US), Gaussian, PC GAMESS (GAMESS-UK, Jaguar, Molpro)
- Useful information for algorithms
 - overlap matrix, molecular orbital coefficients, (basis set coefficients, Hessian)
- Useful information for visualisation
 - coordinates, vibrational frequencies, electronic transitions
- Currently used by GaussSum and PyMOlyze

http://cclib.sf.net

Algorithms

- Population analysis algorithms
 - Mulliken, C², Mayer's bond orders
- We are currently working on
 - Calculation of the electron density
 - Calculation of the Cartesian displacement matrix
- We intend to implement
 - Bader's Atoms in Molecules
 - Frenking's Charge Decomposition Analysis
 - Hirshfeld Population Analysis

http://cclib.sf.net

Development

- Follows Open Source development model
 Subversion, wiki, mailing lists, bug tracker
- Follows best practice for Python

 Cheesecake index, pylint
- Extensive use of unit tests and regression tests (test-driven development)
 - Parsers developed on example log files and the result must agree with the other parsers
 - Modified to cope with real-life problem cases

http://cclib.sf.net

cclib

Parsers and algorithms for computational chemists

Noel O'Boyle, Adam Tenderholt, Mehdi Bounouar

Thank you... ...and new developers welcome!

http://cclib.sf.net